

Viking CCS Pipeline

Environmental Statement Volume IV – Appendix 14-1: Construction Dust Methodology

Document Reference: EN070008/APP/6.4.14.1

Applicant: Chrysaor Production (U.K.) Limited, a Harbour Energy Company PINS Reference: EN070008 Planning Act 2008 (as amended) The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 - Regulation 5(2)(a) Date: October 2023

PINS Reference	Document Reference	Document Revision	Date
EN070008	EN070008/APP/6.4.14.1	Revision 1	October 2023

Prepared by	Verified by	Approved by
FP	GH	MW
Air Quality Consultant	Air Quality Associate Director	EIA Technical Director

Prepared by:

AECOM Limited Exchange Station Tithebarn Street Liverpool Merseyside L2 2QP

© AECOM Limited. All rights reserved.

Table of Contents

1	Construction Dust – Impact Assessment Methodology	1
1.1	Introduction	1
1.2	Step 1: Screen the requirement for a detailed assessment	1
1.3	Step 2: Assess the Risk of Dust Impacts	2
1.4	Step 2A: Determine the Dust Emissions Magnitude	2
1.5	Step 2B: Define the Sensitivity of the Area	4
1.6	Step 2C: Define the Risk of Impacts	6
1.7	Step 3: Identify the need for Site-Specific Mitigation	6
1.8	Step 4: Define Impacts and Their Significance	6

Tables

Table 1: Identifying Sensitivity of Receptors	1
Table 2: Potential Demolition Works Dust Emission Classification	2
Table 3: Potential Earthworks Works Dust Emission Classification	3
Table 4: Potential Construction Works Dust Emission Classification	4
Table 5: Potential Track-out Works Dust Emission Classification	4
Table 6: Sensitivity of the Area to Dust Soiling Effect on People and Property	5
Table 7: Sensitivity of the Area to Human Health Impacts	5
Table 8: Sensitivity of the Area to Ecological Impacts	6
Table 9: Dust Risk without Mitigation	6

1 Construction Dust – Impact Assessment Methodology

1.1 Introduction

1.1.1 This section describes the technical method by which the air quality impact of the Viking CCS Pipeline (hereafter 'the Proposed Development) from construction phase particulate emissions has been considered.

1.2 Step 1: Screen the requirement for a detailed assessment

- 1.2.1 Sensitive receptors were identified and the distance to the site and construction routes were determined according to the examples of sensitivity shown in Table 1. According to the IAQM, an assessment will normally be required where there are sensitive receptors within 350 m of the boundary of a site and/or within 50 m of route(s) used by construction vehicles on the public highway, up to 500 m from the site entrance.
- 1.2.2 A human receptor, as considered within the IAQM guidance, is any location where a person or property may experience:
 - The annoyance effects of airborne dust or dust soiling e.g. dwellings, industrial or commercial premises such as a vehicle showroom, food manufacturers, electronics manufacturers, amenity areas and horticultural operations; or
 - Exposure to PM₁₀ over a period relevant to the air quality objectives.
- 1.2.3 Ecological receptors within 50 m of the boundary of the site or routes used by construction vehicles on the public highway, up to 500 m from the site entrance, also need to be identified.

Sensitivity	Dust Soiling	Human Health	Sensitive Habitats
High	 Dwellings Museum and other culturally important collections Medium- and long-term car parks Car showrooms 	 Residential properties Hospitals Schools Residential care homes 	Locations with an international or national designation (e.g. Special Area of Conservation (SAC)) and the designated features may be affected by dust soiling
Medium	ParksPlaces of work	Office and shop workers, but will generally not include workers occupationally exposed to PM ₁₀ , as protection is	Locations with a national designation (e.g. Site of Special Scientific Interest (SSSI)) where the features may be affected

Table 1: Identifying Sensitivity of Receptors

Sensitivity	Dust Soiling	Human Health	Sensitive Habitats
		covered by Health and Safety at Work legislation	by dust deposition. Examples include: • SSSI • Priority habitat that is potentially sensitive to dust
Low	 Playing fields; Farmland (unless commercially sensitive horticultural); Footpaths; Short term car parks; and Roads 	 Public footpaths; Playing fields; Parks; and Shopping streets 	Locations with a local designation where the features may be affected by dust deposition, such as and Local Wildlife Site (LWS) with dust sensitive features.

1.3 Step 2: Assess the Risk of Dust Impacts

- 1.3.1 The risk of dust arising in sufficient quantities to cause annoyance and/or health effects was determined for each activity (demolition, earthworks, construction works and track out), taking account of:
 - The scale and nature of the works, which determines the potential dust emission magnitude (small, medium or large) (Step 2A); and
 - The sensitivity of the area (Low, Medium or High (as defined in **Table 1**)) (Step 2B).
- 1.3.2 These factors were then combined to give the risk of dust effects with no mitigation applied, as Negligible, Low, Medium or High (as per the matrix shown in **Table 9**).
- 1.3.3 It should be noted that where detailed information was not available to inform the risk category, professional judgement and experience was used and a cautious approach adopted, in accordance with the guidance.

1.4 Step 2A: Determine the Dust Emissions Magnitude Demolition

1.4.1 **Table 2** presents the demolition works dust emission classification. Demolition works will be minimal given the current state of the site.

Table 2: Potential Demolition Works Dust Emission Classification

Emissions Class	Criteria
Large	 Total building volume >50,000 m³ Potentially dusty construction material (e.g. concrete) On-site crushing and screening

Emissions Class	Criteria			
	 Demolition activities >20 m above ground level 			
Medium	 Total building volume 20,000 m³ – 50,000 m³ 			
	 Potentially dusty construction material 			
	 Demolition activities 10-20 m above ground level 			
Small	 Total building volume <20,000 m³ 			
	 Construction material with low potential for dust release (e.g. metal cladding or timber) 			
	 Demolition activities <10 m above ground 			
	Demolition during wetter months			

Earthworks

1.4.2 Earthworks will primarily involve excavating material, haulage, tipping and stockpiling. The classifications in **Table 3** are based on examples of suitable criteria. Factors such as existing land use, topography, seasonality, duration and scale were also taken into consideration, where possible.

Table 3: Potential Earthworks Works Dust Emission Classification

Emissions Class	Criteria		
Large	 Total site area: >10,000 m² 		
	 Potentially dusty soil type (e.g. clay) 		
	 >10 heavy earth moving vehicle active at any one time 		
	 Formation of bunds >8 m in height 		
	 Total material moved >100,000 tonnes 		
Medium	• Total site area: 2,500 - 10,000 m ²		
	 Moderately dusty soil type (e.g. silt) 		
	 5 -10 heavy earth moving vehicle active at any one time 		
	 Formation of bunds 4 - 8 m in height 		
	 Total material moved 20,000 – 100,000 tonnes 		
Small	 Total site area: <2,500 m² 		
	 Soil type with large grain size (e.g. sand) 		
	• < 5 heavy earth moving vehicle active at any one time		
	 Formation of bunds < 4 m in height 		
	 Total material moved <20,000 tonnes 		
	Earthworks during wetter months		

Construction

1.4.3 The key issues when determining the potential dust emission magnitude during the construction phase include the size of the building(s)/ infrastructure, method of construction, construction materials and duration of build. The classifications in **Table 4** are based on examples of suitable criteria. Factors such as seasonality, building type, duration and scale were also taken into consideration, where possible.

Emissions Class	Criteria
Large	 Total building volume >100, 000 m³
	Onsite concrete batching
	Sandblasting
Medium	 Total building volume 25,000 m3-100,000 m³
	 Potentially dusty construction material (e.g. concrete)
	Onsite concrete batching
Small	 Total building volume <25,000 m³ construction
	Material with low potential for dust release (e.g. metal cladding or
	• timber)

Table 4: Potential Construction Works Dust Emission Classification

Track-out

1.4.4 Track-out is the transport of dust and dirt from the construction/demolition site onto the public road network, where it may be deposited and then re-suspended by vehicles using the local road network. The classifications in **Table 5** are based on examples of suitable criteria. Factors such as vehicle size, speed, numbers, geology and duration were also taken into consideration, where possible.

Table 5: Potential Track-out Works Dust Emission Classification

Emissions Class	Criteria	
Large	 50 HGV (>3.5t) outward movements in any one day 	
	Potentially dusty surface material	
	 Unpaved road length > 100 m 	
Medium	• 25 – 100 HGV (>3.5t) outward movements in any one day	
	Moderately dusty surface material	
	 Unpaved road length 50 – 100 m 	
Small	 < 25 HGV (>3.5t) outward movements in any one day 	
	Surface material with low potential for dust release	
	 Unpaved road length < 50 m 	

1.5 Step 2B: Define the Sensitivity of the Area

- 1.5.1 The sensitivity of the area takes account of the following factors:
 - The specific sensitivities of receptors in the area;
 - The proximity and number of those receptors;
 - In the case of PM₁₀, the local background concentrations; and
 - Site specific factors, such as whether there are natural shelters, such as trees to reduce the risk of wind-blown dust
- 1.5.2 The sensitivity of the area is determined separately for dust soiling impacts on people and properties (**Table 6**), human health impacts (**Table 7**) and ecology impacts (**Table 8**).

Table 6: Sensitivity of the Area to Dust Soiling Effect on People and Property

Receptor	Number of Receptors	Distance from Source			
Sensitivity		<20m	<50m	<100m	<350m
High	>100	High	High	Medium	Low
Medium	10-100	High	Medium	Low	Low
Low	1-10	Medium	Low	Low	Low

Table 7: Sensitivity of the Area to Human Health Impacts

Receptor Sensitivity	Annual Mean PM ₁₀ Conc. (μg/m ³)	Number of Receptors	Distance from Source				
			<20m	<50m	<100m	<200	<350m
High	>32	>100	High	High	High	Medium	Low
		10-100	High	High	Medium	Low	Low
		1-10	High	Medium	Low	Low	Low
	28-32	>100	High	High	Medium	Low	Low
		10-100	High	Medium	Low	Low	Low
		1-10	High	Medium	Low	Low	Low
	24-28	>100	High	Medium	Low	Low	Low
		10-100	High	Medium	Low	Low	Low
		1-10	Medium	Low	Low	Low	Low
	<24	>100	Medium	Low	Low	Low	Low
		10-100	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Medium	>32	>10	High	Medium	Low	Low	Low
		1-10	Medium	Low	Low	Low	Low
	28-32	>10	Medium	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
	24-28	>10	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
	<24	>10	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Low	-	1-10	Low	Low	Low	Low	Low

Receptor Sensitivity	Distance from Source			
	<20m	<50m		
High	High	Medium		
Medium	Medium	Low		
Low	Low	Low		

Table 8: Sensitivity of the Area to Ecological Impacts

1.6 Step 2C: Define the Risk of Impacts

1.6.1 The dust emission magnitude determined at Step 2A should be combined with the sensitivity of the area determined at Step 2B to determine the risk of effects with no mitigation applied (**Table 9**). This Step is undertaken for each activity undertaken on site.

Activity	Sensitivity	Dust Emission Classification			
	of Area	Large	Medium	Small	
Demolition	High	High	Medium	Medium	
	Medium	High	Medium	Low	
	Low	Medium	Low	Negligible	
Earthworks	High	High	Medium	Low	
	Medium	Medium	Medium	Low	
	Low	Low	Low	Negligible	
Construction	High	High	Medium	Low	
	Medium	Medium	Medium	Low	
	Low	Low	Low	Negligible	
Track-out	High	High	Medium	Low	
	Medium	Medium	Low	Negligible	
	Low	Low	Low	Negligible	

Table 9: Dust Risk without Mitigation

1.7 Step 3: Identify the need for Site-Specific Mitigation

1.7.1 Based on the risk of effects determined in Step 2C for each activity, appropriate site-specific mitigation measures were recommended. Appropriate mitigation measures are set out in the IAQM Guidance.

1.8 Step 4: Define Impacts and Their Significance

1.8.1 Finally, the significance of the potential residual dust impacts, i.e. after mitigation, was determined. According to the IAQM Guidance the residual impacts assumes that all mitigation measures (recommended in Step 3) to avoid or reduce impacts are adhered to, and therefore the residual impacts should be 'not significant'.

